Hexomino Pair Rectangles with Monomino and Domino Holes

Introduction

Here are rectangles that can be formed by specified pairs of hexominoes, using at least one of each, and allowing any number of one- and two-cell holes that do not touch one another at corners.

See also

Hexomino Numbers

Table of Results

Bryce Herdt has shown that two hexominoes from rows or columns with purple cells cannot tile a rectangle, with or without holes.

 1234567891011121314151617181920212223242526272829303132333435
1 367473775774575477116487488104437788
2 3434633455435443656345464564336677
3 6455548645545544566445545553445855
4 735486××6××66×46×××710××12×××458××××
5 4454434434343445333343364633525577
6 76584310648974545561045554898444810168
7 3346333637443544466455436633336676
8 738×4103×7××812×1525×××9?××?×××4115××××
9 746×466×6××76×816×××612××15×××449××××
10 5546343766744646610128610611881136467108
11 755×487××6×46×68×××108××18×××6410××××
12 745×394××7×66×414×××612××16×××346××××
13 4346474874463443876347534434334655
14 555634312646636359854677677113258877
15 745×455××6××46410×××108××8×××449××××
16 544444415846443468836686128810433461010
17 4346554251668143510618161646222210822123381482224
18 765×354××6××89×818××12?××?×××679××××
19 756×366××10××78×816××12?××?×××4910××××
20 1166×3106××12××65×316××12?××?×××8109××××
21 634734496810634106412121261286910122461081111
22 44410455?12681246866???6?14????4748???
23 855×355××10××77×822×××12?×?×××678××××
24 745×354××6××57×622×××814×14×××347××××
25 46412643?151118163681210???6??14???776????
26 845×486××8××47×88×××9?××?××649××××
27 855×696××8××47×822×××10?××?××7410××××
28 1065×383××11××311×1012×××12?××?××678××××
29 4434343443634344364824637676336638
30 434554311464432433791047747447337733
31 3348243594106359389109648769108331010119
32 765×586××6××48×414×××108××?×××6710×××
33 768×5106××7××68×68×××8?××?×××6710×××
34 875×7167××10××57×1022×××11?××?×××3311×××
35 875×786××8××57×1024×××11?××?×××839×××
 1234567891011121314151617181920212223242526272829303132333435

2 Tiles

3 Tiles

4 Tiles

5 Tiles

6 Tiles

7 Tiles

8 Tiles

9 Tiles

10 Tiles

11 Tiles

12 Tiles

14 Tiles

15 Tiles

16 Tiles

18 Tiles

22 Tiles

24 Tiles

25 Tiles

Last revised 2026-01-27.


Back to Polyomino and Polyking Tiling < Polyform Tiling < Polyform Curiosities
Col. George Sicherman [ HOME | MAIL ]